
CIF Documentation

Evgeny Novikov, Ilya Shchepetkov

Aug 08, 2022

CONTENTS

1 Contents 3

Bibliography 29

Index 31

i

ii

CIF Documentation

CIF (C Instrumentation Framework) is a tool that implements aspect-oriented programming for the C programming
language. You can learn more about CIF at the project site.

CONTENTS 1

http://en.wikipedia.org/wiki/Aspect-oriented_programming
https://forge.ispras.ru/projects/cif

CIF Documentation

2 CONTENTS

CHAPTER

ONE

CONTENTS

1.1 Deployment

You can download archives with CIF binaries prepared in advance either from the official project site or from artifacts
attached to GitHub Actions. Also, you can build CIF yourself from scratch according to instructions below. Section
Building debug version of Aspectator describes various variants of development builds.

1.1.1 Build dependencies

To build CIF you need to install the following packages:

• make

• gcc

• g++

• flex

• bison

1.1.2 Build and install

First you need to download archives with the source code of prerequisites needed by GCC (gmp, mpfr, mpc and isl):

$ cd aspectator
$./contrib/download_prerequisites

Then return back to the root of the repository and execute make:

$ cd ..
$ make

You can use option -jN for make to significantly speed up building, e.g.:

$ make -j16

In addition, you can speed up building further by disabling bootstrap:

$ ASPECTATOR_CONFIGURE_OPTS="--disable-bootstrap" make -j16

After successful build you can install CIF, e.g.:

3

https://forge.ispras.ru/projects/cif/files
https://github.com/ldv-klever/cif/actions

CIF Documentation

$ sudo make install

You can specify the alternative directory where CIF will be installed, e.g.:

$ DESTDIR=/home/user/cif make install

1.1.3 Automatic testing

You can run the following command for automatic testing of CIF:

$ make test

It requires Python 3 and pytest to be installed.

1.1.4 Uninstall

You can uninstall CIF by running the following command:

$ sudo make uninstall

If CIF was installed into an alternative directory with the DESTDIR option then you need to use it again:

$ DESTDIR=/home/user/cif make uninstall

1.1.5 Cleanup

You should run the following command to remove build directories:

$ make clean

1.2 Tutorial

This section describes several typical cases of using CIF as well as current most vital limitations. CIF has a bunch of
command-line options that you can investigate by running it with -h or --help. In the given tutorial we will consider
only the following ones:

• --in – a path to a C source file to be processed.

• --aspect – a path to an aspect file. Below there will be several examples of aspect files.

• --out – a path where a result will be placed.

• --back-end – a kind of a back-end to be used, e.g. ‘src’ or ‘bin’.

If you are going to try provided examples, we recommend to change your current directory to docs/samples within
the source tree root. Hereinafter all file paths and commands will be relative to that directory.

For all use cases below we will consider as an input the C source file presented in Listing 1.1. You can find it here:
calculate-max-rectangle-square.c.

4 Chapter 1. Contents

CIF Documentation

Listing 1.1: Input C source file

/* This is a very simple program that finds out a rectangle with a maximum square from a␣
→˓provided list of rectangle
heights and widths. It is intended only for demonstration of CIF capabilities. Please,

→˓ do not use it anywhere since
it contains several issues.
The program expects the following input:

height1 width1 height2 width2 ... heightN widthN
where heighti and widthi should be integers representing respectively height and␣

→˓width of ith rectangle. */
#include <stdio.h>
#include <stdlib.h>

#define MAX(a, b) (a > b ? a : b)

struct rectangle
{

unsigned int height;
unsigned int width;
unsigned int square;

};

unsigned int calculate_rectangle_square(struct rectangle *r)
{

r->square = r->height * r->width;
return r->square;

}

int main(int argc, const char *argv[])
{

unsigned int rectangles_num;
struct rectangle *rectangles;
unsigned int cur_max_rectangle_square = 0;

rectangles_num = (unsigned int)(argc / 2);
rectangles = calloc(rectangles_num, sizeof(*rectangles));

for (int i = 0; i < rectangles_num; i++) {
struct rectangle *cur_rectangle = rectangles + i;
cur_rectangle->height = atoi(argv[2 * i + 1]);
cur_rectangle->width = atoi(argv[2 * i + 2]);
calculate_rectangle_square(cur_rectangle);
cur_max_rectangle_square = MAX(cur_max_rectangle_square, cur_rectangle->square);

}

printf("Maximum rectangle square is %u\n", cur_max_rectangle_square);

return 0;
}

Normal compilation and running of this program will result in the following output:

1.2. Tutorial 5

CIF Documentation

$ gcc calculate-max-rectangle-square.c -o calculate-max-rectangle-square
$./calculate-max-rectangle-square 2 5 7 3 4 4
Maximum rectangle square is 21

1.2.1 Weaving function calls

This is the most typical use case. Listing 1.2 provides an example of an appropriate aspect file located in
weave-func-calculate-rectangle-square.aspect.

Listing 1.2: Aspect file intended for weaving calls of function calcu-
late_rectangle_square()

/* Introduce extra checking and debugging for calls of function calculate_rectangle_
→˓square(). */
around: call(unsigned int calculate_rectangle_square(struct rectangle *r))
{

unsigned int tmp, res;

// Check for possible overflow.
tmp = r->height * r->width;
if (r->height != 0 && tmp / r->height != r->width)

printf("After multiplication of %u and %u there will be overflow, so you can get␣
→˓invalid result\n", r->height, r->width);

// Invoke woven in function itself.
res = $proceed;

// Debug its result.
printf("Calculated rectangle square is %u (%u * %u)\n", res, r->height, r->width);

return res;
}

To weave in the target C source file with the given aspect you can run the following command:

$../../inst/bin/cif --in calculate-max-rectangle-square.c --aspect weave-func-calculate-
→˓rectangle-square.aspect --out calculate-max-rectangle-square --back-end bin

Then you will get the following output when running the generated program binary:

$./calculate-max-rectangle-square 2 5 7 3 4 4
Calculated rectangle square is 10 (2 * 5)
Calculated rectangle square is 21 (7 * 3)
Calculated rectangle square is 16 (4 * 4)
Maximum rectangle square is 21

This demonstrates debugging and logging facilities of CIF. Probably by some reason you would not like to add an
appropriate code directly to program’s source files. So you can use aspect files instead in a similar way.

The same aspect also enables extra checking. Therefore, you can get the following warning if you will intentionally
violate implicit assumptions regarding possible multiplication overflows:

6 Chapter 1. Contents

CIF Documentation

$./calculate-max-rectangle-square 4317358 6927345
After multiplication of 4317358 and 6927345 there will be overflow, so you can get␣
→˓invalid result
Calculated rectangle square is 1971072462 (4317358 * 6927345)
Maximum rectangle square is 1971072462

(the valid result should be 29907828354510).

1.2.2 Weaving macros

Sometimes it may be necessary to change macros. CIF is capable to do that. weave-macro-max.aspect in Listing
1.3 contains an example that add extra debugging for macro MAX.

Listing 1.3: Aspect file intended for weaving macro MAX

/* Notify when current maximum value is changed. It is assumed that "a" holds that value.
→˓ */
around: define(MAX(a, b))
{
({unsigned int __max; if (a > b) {__max = a;} else {printf("Update maximum value from %u␣
→˓to %u\n", a, b); __max = b;} __max;})
}

On executing following commands you will get the output as follows:

$../../inst/bin/cif --in calculate-max-rectangle-square.c --aspect weave-macro-max.
→˓aspect --out calculate-max-rectangle-square --back-end bin
$./calculate-max-rectangle-square 2 5 7 3 4 4
Update maximum value from 0 to 10
Update maximum value from 10 to 21
Maximum rectangle square is 21

1.2.3 Weaving variables

Listing 1.4 shows how to weave in variable assignments. The corresponding aspect file is
weave-var-rectangles-num.aspect.

Listing 1.4: Aspect file intended for weaving assignments of variable
rectangles_num

/* Do not consider last rectangle. */
after: set(unsigned int rectangles_num)
{

$res--;
}

This aspect makes pretty artificial change (it excludes the last rectangle from calculations), but you can have some more
important things to do, e.g. you can dump all values assigned to a given variable.

To test this aspect you can run the following commands:

1.2. Tutorial 7

CIF Documentation

$../../inst/bin/cif --in calculate-max-rectangle-square.c --aspect weave-var-rectangles-
→˓num.aspect --out calculate-max-rectangle-square --back-end bin
$./calculate-max-rectangle-square 2 5 7 3 4 4 8 9
Maximum rectangle square is 21

1.2.4 Weaving compound types

CIF suggests means to modify compound types such as structures, unions and enumerations. For instance, you can find
an example of an appropriate aspect in Listing 1.5 (weave-struct-rectangle.aspect in docs/samples).

Listing 1.5: Aspect file intended for weaving structure rectangle

/* It does not work at the moment. */
before: introduce(struct rectangle)
{

unsigned int perimeter;
}

before: call(unsigned int calculate_rectangle_square(struct rectangle *r))
{

/* Calculate, store and print rectangle perimeter in addition to square. */
r->perimeter = r->height + r->width;
printf("Calculated rectangle perimeter is %u (%u * %u)\n", r->perimeter, r->height,␣

→˓r->width);
}

This aspect adds extra field perimeter to the definition of structure rectangle. Besides, through weaving of function
calculate_rectangle_square() it calculates, stores and prints out perimeters for all rectangles.

To test this aspect you can run the following commands:

$../../inst/bin/cif --in calculate-max-rectangle-square.c --aspect weave-struct-
→˓rectangle.aspect --out calculate-max-rectangle-square --back-end bin
$./calculate-max-rectangle-square 2 5 7 3 4 4 8 9
Calculated rectangle perimeter is 7 (2 * 5)
Calculated rectangle perimeter is 10 (7 * 3)
Calculated rectangle perimeter is 8 (4 * 4)
Calculated rectangle perimeter is 17 (8 * 9)
Maximum rectangle square is 72

1.2.5 Querying source code

CIF can execute different queries to target source files. For instance, you can use aspect query-func-calls.aspect
shown in Listing 1.6 to find out all function calls.

Listing 1.6: Aspect file demonstrating source code queries

/* Query all function calls and print some information on them. */
query: call($ $(..))
{

(continues on next page)

8 Chapter 1. Contents

CIF Documentation

(continued from previous page)

$fprintf<"func-calls.txt", "Function %s() is called at line %d\n", $func_name, $call_
→˓line>
}

This aspect file will not affect your program. You will only get an extra file at the weaving stage. For instance:

$../../inst/bin/cif --in calculate-max-rectangle-square.c --aspect query-func-calls.
→˓aspect --out calculate-max-rectangle-square --stage instrumentation
$ cat func-calls.txt
Function calloc() is called at line 32
Function atoi() is called at line 36
Function atoi() is called at line 37
Function calculate_rectangle_square() is called at line 38
Function printf() is called at line 42

(we asked CIF to stop after stage instrumentation since we would not like to get the program binary in this case).

1.2.6 Invalid aspects

You can wonder how to track various issues with aspects. First of all, CIF will fail and report appropriate errors if
you will provide syntactically invalid aspects. Sometimes, aspects can have valid syntax, but they might not work as
expected. Listing 1.7 presents the content of weave-invalid-func-decl.aspect. Therein we deliberately specified
invalid declaration for function calculate_rectangle_square().

Listing 1.7: Aspect file using invalid target function declaration

/* Declaration of function calculate_rectangle_square() is not valid intentionally. */
around: call(struct rectangle *calculate_rectangle_square(unsigned int, unsigned int))
{
}

You will not get any warnings if you will run CIF as usual:

$../../inst/bin/cif --in calculate-max-rectangle-square.c --aspect weave-invalid-func-
→˓decl.aspect --out calculate-max-rectangle-square --back-end bin

But if you will set environment variable LDV_PRINT_SIGNATURE_OF_MATCHED_BY_NAME the situation will change:

$ export LDV_PRINT_SIGNATURE_OF_MATCHED_BY_NAME=1
$../../inst/bin/cif --in calculate-max-rectangle-square.c --aspect weave-invalid-func-
→˓decl.aspect --out calculate-max-rectangle-square --back-end bin

These functions were matched by name but have different signatures:
source function declaration: unsigned int calculate_rectangle_square (struct rectangle␣

→˓*r)
aspect function declaration: struct rectangle *calculate_rectangle_square (unsigned␣

→˓int, unsigned int)

1.2. Tutorial 9

CIF Documentation

1.2.7 Getting woven source files

It may be useful for debugging and necessary for some applications to get woven source files rather than binaries as
an output. For instance, you can slightly change the command for the first use case (note the change of bin to src for
command-line option --back-end):

$../../inst/bin/cif --in calculate-max-rectangle-square.c --aspect weave-func-calculate-
→˓rectangle-square.aspect --out calculate-max-rectangle-square --back-end src

and investigate outputted file calculate-max-rectangle-square that will be a C source file.

1.2.8 Further study

CIF has much more capabilities in addition to the ones that we presented in this tutorial. You can read Aspect-Oriented
C that describes the aspect-oriented extension of the C programming language to study all possible ways of using CIF.
Besides, you can find a lot of examples of aspects in projects Klever (in particular, here and here) and Clade (here).

1.2.9 Known issues

CIF is not used very widely, so there is a lot of different issues with it. You can find the known issues in the official
issue tracker. The most vital ones are as follows:

• CIF does not have a command-line interface that is compatible with a compiler (#6829). Thus, you can not easily
incorporate it into your program’s build process.

• CIF does not support multiple advices for the same join point (#358).

• CIF does not support well the entire C programming language with all GCC compiler extensions. Other compiler
extensions are supported to the extent that it is done by GCC itself (you can find some related command-line
options here).

• CIF is not particularly optimized. It is noticeable if it is called to handle hundreds or thousands of files.

1.3 Aspect-Oriented C

1.3.1 Introduction

This section presents an aspect-oriented extension of the C programming language (hereinafter AOC (Aspect-Oriented
C)). This extension allows you to extract cross-cutting concerns of programs into separate modules, so-called aspects,
consisting of a set of advices primarily.

You can implement cross-cutting concerns within advice bodies using any correct C code suitable for function bodies.
Also, you can use GCC compiler extensions and a set of special directives. Advices include pointucts to specify join
points of the program for which it is necessary to execute this code. For instance, AOC deals with definitions and
substitutions of macros as well as definitions and declarations of functions, variables, and composite types as join
points. In order to simplify the development of aspects, macros and declarations of functions, variables, and types used
to describe join points generally coincide in syntax, constraints, and semantics with the corresponding constructions
of the C programming language with GCC compiler extensions (see sections Macros and Declarations of functions,
variables, and types for details). You can see an example of an aspect in Listing 1.8.

10 Chapter 1. Contents

https://forge.ispras.ru/projects/klever
https://klever.readthedocs.io/en/latest/dev_common_api_models.html
https://klever.readthedocs.io/en/latest/dev_req_specs.html
https://github.com/17451k/clade
https://github.com/17451k/clade/blob/master/clade/extensions/info/info.aspect
https://forge.ispras.ru/projects/cif/issues
https://forge.ispras.ru/projects/cif/issues
https://forge.ispras.ru/issues/6829
https://forge.ispras.ru/issues/358
https://gcc.gnu.org/
https://gcc.gnu.org/onlinedocs/gcc/C-Dialect-Options.html
https://gcc.gnu.org/

CIF Documentation

Listing 1.8: Example of an aspect with two advices

before: call(void lock(void))
{

if (locks_counter)
abort();

locks_counter++;
}

before: call(void unlock(void))
{

if (!locks_counter)
abort();

locks_counter--;
}

Before parsing aspects, aspect preprocessing is carried out. Aspect preprocessing behaves exactly in the same way as
preprocessing performed by the GCC compiler except for symbol @ is treated instead of #. Listing 1.9 exemplifies
using such preprocessor directives as macros and conditionals in the aspect. The corresponding preprocessed aspect is
shown in Listing 1.10.

Listing 1.9: Example of using preprocessor macros and conditionals in
an aspect

@define LOG_FILE "work/info.txt"
@define GET get_property

@if defined DEBUG
@define LOG(action, prop) $fprintf<LOG_FILE, "%s property %s\n", action, prop>
@else
@define LOG(action, prop)
@endif

query: call(int GET(const char *))
{

LOG("get", $arg_sign1);
}

Listing 1.10: Preprocessed aspect

10 "aspect-macros-and-conditionals.aspect"
query: call(int get_property(const char *))
{
$fprintf<"work/info.txt", "%s property %s\n", "get", $arg_sign1>;

}

In addition to using preprocessor macros and conditionals in aspects, you can also include aspects like C source files
include headers. Listing 1.11 demonstrates an example of using @include in the aspect. The included aspect is shown
above in Listing 1.9. The corresponding preprocessed aspect is shown in Listing 1.12.

1.3. Aspect-Oriented C 11

https://gcc.gnu.org/

CIF Documentation

Listing 1.11: Example of including an aspect

@define PRODUCTION
@include "aspect-macros-and-conditionals.aspect"

Listing 1.12: Preprocessed aspect

10 "aspect-macros-and-conditionals.aspect"
query: call(int get_property(const char *))
{
;

}

Similarly to the C programming language, you can use comments in aspects. Unlike C, not all comments are eliminated
at aspect preprocessing. This is the case for comments used in advice bodies. For instance, in this way you can imple-
ment so-called model comments explaining particular actions and checks performed by requirement specifications.

In addition to the possibility to describe cross-cutting concerns in the form of aspects, AOC assumes means for auto-
matic linkage of aspects with source files of the target program. This process is referred to as aspect weaving. In effect,
for some representation of program source files, it searches for join points corresponding to advice pointcuts specified
in the aspect. In case matches are found, join points are framed with the code specified in advice bodies (you can
see section Advices for more insights). Eventually you can get either woven in program source files or their compiled
versions.

Following subsections present a formal grammar of AOC. We use the following notation. Nonterminals are bold and
they may be links to appropriate definitions, e.g. pointcut, while terminals are enclosed in double quotes, e.g. "call"1.
:== following a nonterminal represents a definition of this nonterminal. Various variants of a nonterminal definition
are either placed on separate lines or separated by |. In nonterminal definitions optional nonterminals are enclosed in
square brackets, e.g. [pointer].

Note: Keep in mind that the actual implementation may be slightly inconsistent with the given description. Some
things may be missed while it can bring extra functionality. You can find known issues in the official issue tracker.
Please, do not hesitate to report other ones.

1.3.2 Tokens

Syntax

aoc-token ::= c-or-aoc-keyword
aoc-identifier
aoc-integer-constant
aoc-string-literal
c-or-aoc-punctuator
file-name
advice-body
location-control-directive
comment

1 Double quotes themselves are framed by single quotes like '"'.

12 Chapter 1. Contents

https://klever.readthedocs.io/en/latest/dev_req_specs.html#developing-model
https://forge.ispras.ru/projects/cif/issues

CIF Documentation

Constraints

Compared to token defined in 6.4 of [ISO-9899-2011], aoc-token has the following amendments:

• Modified set of keywords c-or-aoc-keyword is used instead of keyword (Keywords).

• aoc-identifier replaces identifier (Identifiers).

• AOC supports only integer constants aoc-integer-constant rather than constant (Integer constants).

• string-literal is replaced by aoc-string-literal (String literals).

• aoc-punctuator is used instead of punctuator (Punctuators).

In addition, aoc-token supports:

• file-name (File names).

• advice-body (Advice bodies).

• location-control-directive (Location control directives).

• comment (Comments).

We do not describe preprocessing-token presented in 6.4 of [ISO-9899-2011] according to the remark on aspect
preprocessing given in Introduction.

1.3.3 Keywords

Syntax

c-or-aoc-keyword ::= c-keyword
aoc-keyword

c-keyword ::= "auto" | "char" | "const" | "double"
"enum" | "extern" | "float" | "inline"
"int" | "long" | "register" | "restrict"
"short" | "signed" | "static" | "struct"
"typedef" | "union" | "unsigned" | "void"
"volatile" | "_Bool" | "_Complex" | "_Imaginary"

aoc-keyword ::= "after" | "around" | "before" | "call"
"declare_func" | "define" | "execution" | "expand"
"file" | "get" | "get_global" | "get_local"
"infile" | "infunc" | "info" | "introduce"
"new" | "pointcut" | "set" | "set_global"
"set_local" | "query"

Constraints

In comparison with keyword presented in 6.4.1 of [ISO-9899-2011] in AOC c-or-aoc-keyword can be either a
c-keyword keyword or an AOC aoc-keyword keyword. c-keyword does not support "break", "case", "continue",
"default", "do", "else", "for", "goto", "if", "return", "switch" and "while", i.e. those keywords that can only be used in
C statements and expressions. You still can use them in advice bodies, but they are not parsed at aspect weaving.

aoc-keyword is the definition of AOC keywords. It supports:

• "after", "around", "before", "info", "new" and "query" (Advices);

• "call", "define", "declare_func", "execution", "expand", "file", "get", "get_global", "get_local", "infile", "infunc",

1.3. Aspect-Oriented C 13

CIF Documentation

"introduce", "pointcut", "set", "set_global" and "set_local" (Pointcuts).

Semantics

Basically the semantics of keywords c-or-aoc-keyword corresponds to the semantics of keyword described in 6.4.1
of [ISO-9899-2011]. An important difference is that a word can be aoc-keyword only outside of comments, ad-
vice bodies, macros and declarations of functions, variables, and types. Besides, only words used in declarations of
functions, variables, and types can represent keywords of the C programming language.

1.3.4 Identifiers

Syntax

aoc-identifier ::= aoc-identifier-nondigit
aoc-identifier aoc-identifier-nondigit
aoc-identifier digit

aoc-identifier-nondigit ::= nondigit
"$"

Constraints

Nonterminals digit and nondigit are defined in 6.4.2 of [ISO-9899-2011]. Compared to identifier, which
is presented in 6.4.2 of [ISO-9899-2011], AOC aoc-identifier supports modified set of non-digital characters
aoc-identifier-nondigit instead of identifier-nondigit.

aoc-identifier-nondigit does not support universal character names universal-character-name and any
other characters. Additionally, aoc-identifier-nondigit supports wildcard "$" (take into account that the $ sym-
bol is not included in the standard sets of non-digital characters nondigit and digits digit). We will consider other
constraints related to "$" in following sections.

Semantics

In general the semantics of aoc-identifier corresponds to the semantics of identifier described in 6.4.2 of
[ISO-9899-2011]. Each "$" wildcard in aoc-identifier corresponds to a sequence of characters (both digit
and nondigit) of arbitrary length2. For instance, aoc-identifier $_property$ will match such identifiers as
get_property, set_property and get_property_value, but it will not match, say, receive_message. If several "$"
wildcards are contiguous in the same identifier, they are treated as one "$". An identifier is not converted to a keyword
if it uses at least one "$" wildcard. Following sections describe specific semantics of "$" wildcards for certain entities.

2 Everywhere in this document an arbitrary length includes zero.

14 Chapter 1. Contents

CIF Documentation

1.3.5 Integer constants

Syntax

aoc-integer-constant ::= decimal-constant

Constraints

Nonterminal decimal-constant is defined in 6.4.4.1 of [ISO-9899-2011]. Compared to integer-constant defined
in 6.4.4.1 of [ISO-9899-2011], in AOC aoc-integer-constant does not support:

• octal-constant.

• hexadecimal-constant.

• integer-suffix.

Semantics

aoc-integer-constant dumbs down integer-constant presented in 6.4.4.1 of [ISO-9899-2011]. Appropriate
integer constants are always stored in a variable with the unsigned int type (standard type conversion rules are applied
in case of overflows).

1.3.6 String literals

Syntax

aoc-string-literal ::= '"' [s-char-sequence] '"'

Constraints

Nonterminal s-char-sequence is defined in 6.4.5 of [ISO-9899-2011]. Compared to string-literal specified in
6.4.5 of [ISO-9899-2011], aoc-string-literal does not support wide string literals L" s-char-sequenceopt ".

Semantics

aoc-string-literal is a simplification of string-literal presented in 6.4.5 of [ISO-9899-2011].

1.3.7 Punctuators

Syntax

c-or-aoc-punctuator ::= c-punctuator
aoc-punctuator

c-punctuator ::= "(" | ")" | "[" | "]" | "*" | "..." | "," | "$" | ".."
aoc-punctuator ::= "(" | ")" | ":" | "!" | "&&" | "||"

1.3. Aspect-Oriented C 15

CIF Documentation

Constraints

In comparison with punctuator, which is presented in 6.4.6 of [ISO-9899-2011], in AOC c-or-aoc-punctuator
can be either punctuator of the C programming language c-punctuator, or AOC punctuator aoc-punctuator. The
definition of c-punctuator supports only "(", ")", "[", "]", "*", "..." and "," from the punctuator definition, i.e.
those punctuators that can be used when writing macros and declarations of functions, variables, and types. Besides,
c-punctuator supports following extra punctuators:

• "$" – a universal type specifier or a universal array size (Declarations of functions, variables, and types).

• ".." – a list of arbitrary parameters of a macro function or a function of arbitrary length (see Macros and Decla-
rations of functions, variables, and types for more details).

The aoc-punctuator definition includes:

• ":" – it introduces a definition of a named pointcut or advice.

• "(", ")", "!", "&&", "||" – these punctuators are for the sake of development of composite pointcuts.

• "(", ")" – braces also separate macros and declarations of functions, variables, and types from descriptions of
pointcuts and advices.

Semantics

The semantics of c-or-aoc-punctuator generally corresponds to the semantics of punctuator described in 6.4.6
of [ISO-9899-2011]. A vital difference is that a punctuator can be aoc-punctuator only outside of comments, ad-
vice bodies, macros and declarations of functions, variables, and types. Besides, only punctuators used in macros
and declarations of functions, variables and composite types are considered as punctuators of the C programming
language (Macros and Declarations of functions, variables, and types). The semantics of additional punctuators of
c-punctuator is discussed in detail in sections Macros and Declarations of functions, variables, and types. Sections
Pointcuts and Advices delves into the semantics of aoc-punctuator. We do not consider punctuators used in special
directives here, because they have no meaning outside the context of special directives that are parsed in a special way.

1.3.8 File names

Syntax

file-name ::= '"' q-char-sequence '"'

Constraints

The q-char-sequence nonterminal is defined in 6.4.7 of [ISO-9899-2011].

16 Chapter 1. Contents

CIF Documentation

Semantics

Basically the semantics of file-name corresponds to the semantics of header-name described in 6.4.7 of
[ISO-9899-2011]. Some specific character sequences in file names are interpreted as follows:

• One or more $$3. Each $$ corresponds to sequence of q-characters q-char-sequence of arbitrary length. If
several $$ are contiguous in the same file name, they are treated as one $$.

• Special directive $this that can be used only to indicate the file name and only in the form of "$this" (Special
directives).

• Special directives with predefined values (see Special directives for more details).

Note: Generally speaking, one can use $ characters in file names but this is not considered in AOC.

1.3.9 Advice bodies

Syntax

advice-body ::= "{" compound-statement-with-comments-and-special-directives "}"

Constraints

advice-body represents a C code enclosed in curly braces. It is similar to compound-statement of
function-definition from 6.9.1 of [ISO-9899-2011]. In advice bodies one can use any correct C code with GCC
compiler extensions that can be used in function bodies. In addition, advice bodies may contain comments and special
directives which reflect information about joint points or have some special purpose. For example, special directive
$arg_numb denotes the number of function parameters, $fprintf is intended for formatted output of data to a file, $env
denotes a value of an environment variable.

Semantics

Advice bodies are not parsed except for special directives and comments. Special directives are substituted with cor-
responding values either during parsing of aspects (so-called special directives with predefined values) or at aspect
weaving. Comments are ignored to correctly balance curly braces and determine ends of advice bodies. After parsing
comments remain in advice bodies as is. This is necessary in order to keep, say, model comments.

1.3.10 Special directives

Syntax

special-directive ::= "$" aoc-identifier [aoc-integer-constant]
"$" aoc-identifier [aoc-integer-constant] "<" special-directive-parameter-list ">"

special-directive-parameter-list ::= special-directive-parameter
special-directive-parameter-list "," special-directive-parameter

special-directive-parameter ::= special-directive
aoc-integer-constant

3 A pair of $ characters is used to avoid collisions with special directives.

1.3. Aspect-Oriented C 17

https://gcc.gnu.org/

CIF Documentation

aoc-string-literal

Constraints

special-directive can be used only in advice-body and file-name. In order to avoid collisions with the C code
used in advice bodies along with special directives, it is prohibited to use whitespace characters in special directives
except for separating special directive parameters from each other. All special directives start with the $ symbol which
cannot be used in the C code.

identifier defines a type of special directive. The following types of special directives are supported: $arg,
$arg_numb, $arg_sign, $arg_size, $arg_type, $arg_val, $context_file, $context_func_file, $context_func_name,
$env, $fprintf, $name, $proceed, $res, $ret_type, $storage_class, $signature and $this. It is forbidden to use digits
in identifier of special-directive. This is done to avoid collisions of identifiers with aoc-integer-constant
that may be a part of special directives.

aoc-integer-constant of special-directive should be used only together with $arg, $arg_sign, $arg_size,
$arg_type or $arg_val. These integer constants can only refer ordinal numbers of arguments of functions or macros
from appropriate join points. Numbering begins with 1. You can not separate aoc-integer-constant from
aoc-identifier as it was stated above.

special-directive-parameter-list should be used only along with $env and $fprintf. The only parameter
allowed for $env is aoc-string-literal. This string literal should exactly match a name of one of environment
variables. You can use any number of parameters for $fprintf but at least two parameters are mandatory. The first
parameter should be either a string literal or a special directive with a predefined value which is also a string literal.
This string literal should represent a file name (either relative or absolute path) that can be opened for writing4. The
second parameter should be aoc-string-literal. This string literal represents simplified format defined in 7.21.6.1
of [ISO-9899-2011]. Only %d and %s specifiers are acceptable. They should match aoc-integer-constant and
aoc-string-literal respectively among other parameters of special directives. Also, any of these parameters can
be a special directive whose value is aoc-integer-constant or aoc-string-literal. Listing 1.10 contains an
example of $fprintf.

Semantics

All special directives except $fprintf are replaced with some values: integers, identifiers without $ wildcards
or string literals.

Special directive $fprintf performs formatted data output to a specified file in the same way as standard C function
fprintf described in 7.21.6.1 of [ISO-9899-2011].

Special directives $env and $this are the only special directives with predefined values. These values are determined
at the stage of aspect parsing. Instead of $env a value of a corresponding environment variable is substituted. $this is
identified with a name of a woven in C source file.

The remaining special directives are substituted at aspect weaving as follows:

• $argi – a name of ith formal parameter of a function or macro.

• $arg_numb – the number of parameters of a function or macro.

• $arg_signi – a signature of ith actual parameter of a function. An argument signature is an identifier based on a
syntax tree of a corresponding argument. Argument signatures should be built in a way to distinguish arguments
corresponding to different memory objects unambiguously though it is not always possible.

• $arg_sizei – an array size if ith actual parameter of a function is a pointer to a one-dimensional array or -1
otherwise.

4 This file is created if it does not exist.

18 Chapter 1. Contents

CIF Documentation

• $arg_typei – a type of ith formal parameter of a function. A corresponding type is provided by using typedef, so
function pointers are also supported.

• $arg_vali – a function name if ith actual parameter of a function is an address of some known function or 0
otherwise.

• $context_file – a path to a file containing a join point.

• $context_func_file – a path to a file that defines a function containing a join point.

• $context_func_name – a name of a function containing a join point.

• $name – a name of a macro, function, variable or composite type corresponding to a join point.

• $proceed – a join point itself, for example, an original function call.

• $res – a function return value (it is provided by a special variable).

• $ret_type – a type of function’s return value or variable or a composite type (it is provided via typedef).

• $storage_class – a storage class of a function or global variable.

1.3.11 Location control directives

Syntax

location-control-directive ::= "#" aoc-integer-constant aoc-string-literal new-line

Constraints

The new-line nonterminal is defined in 5.2.1 of [ISO-9899-2011].

Location control directives (aka line directives) can be used outside of advice bodies. They should occupy exactly one
line.

Semantics

The semantics of location-control-directive generally corresponds to the semantics of line control pre-
processing directives described in 6.10.4 of [ISO-9899-2011]. In the location-control-directive definition
aoc-integer-constant points out line numbers in files whose names are specified by aoc-string-literal.

line directives can arise at aspect preprocessing considered in Introduction. Users should unlikely use them.

1.3.12 Comments

Outside of comment the // symbols indicate the beginning of a one-line comment. The content of this comment is
scanned only to detect the new-line character that ends it up and that is not included in the comment itself. Outside
of comment the /* characters indicate the beginning of a multiline comment. The content of this comment is scanned
only to detect the */ characters that end it.

On aspect preprocessing all comments always remain in the text of the resulting file with the aspect. This is done in
order to keep, say, model comments. For a similar reason comments are kept within advice bodies at aspect parsing
and aspect weaving.

1.3. Aspect-Oriented C 19

CIF Documentation

1.3.13 Macros

Syntax

macro ::= identifier
identifier "(" [identifier-or-any-param-list] ")"
identifier "(" [identifier] "..." ")"
identifier "(" identifier-or-any-param-list "," [identifier] "..." ")"

identifier-or-any-param-list ::= identifier
".."
identifier-or-any-param-list "," identifier

Constraints

In comparison with preprocessor directives defined in 6.10 of [ISO-9899-2011], in AOC macro supports a GCC com-
piler extension that allows associating a name to "..." in the form of optional identifier before it. "..." designates
a list of arbitrary macro parameters of arbitrary length. Also, identifier-or-any-param-list supports the ".."
wildcard. It means a list of arbitrary macro parameters of arbitrary length.

Semantics

In general, the semantics of macro corresponds to the semantics of preprocessor directives described in 6.10 of
[ISO-9899-2011]. Wildcard ".." matches a list of arbitrary macro parameters of arbitrary length at a joint point. For
instance, LOCK(x, ..) will match both LOCK(x), LOCK(x, y) and LOCK(x, y, z), but it will not match LOCK()
and LOCK. If there are several consecutive ".." separated by commas, they are treated as one "..".

1.3.14 Declarations of functions, variables, and types

Syntax

declaration ::= declaration-specifiers [declarator]
declaration-specifiers ::= storage-class-specifier [declaration-specifiers]

type-specifier [declaration-specifiers]
type-qualifier [declaration-specifiers]
".." [declaration-specifiers]
"..."

storage-class-specifier ::= "typedef"
"extern"
"static"
"auto"
"register"

type-specifier ::= "void"
"char"
"short"
"int"
"long"
"float"
"double"
"signed"

20 Chapter 1. Contents

https://gcc.gnu.org/

CIF Documentation

"unsigned"
"_Bool"
"_Complex"
struct-or-union-specifier
enum-specifier
typedef-name
"$"

struct-or-union-specifier ::= struct-or-union identifier
struct-or-union ::= "struct"

"union"
enum-specifier ::= "enum" identifier
typedef-name ::= identifier
type-qualifier ::= "const"

"restrict"
"volatile"

function-specifier ::= "inline"
declarator ::= [pointer] direct-declarator
direct-declarator ::= identifier

"(" declarator ")"
direct-declarator "[" [integer-constant] "]"
direct-declarator "[" "$" "]"
direct-declarator "(" parameter-type-list ")"

pointer ::= "*" [type_qualifier_list]
"*" [type_qualifier_list] pointer

type_qualifier_list ::= type-qualifier
type_qualifier_list type-qualifier

parameter-type-list ::= parameter-list
parameter-list ::= parameter-declaration

parameter-list "," parameter-declaration
parameter-declaration ::= declaration-specifiers declarator

declaration-specifiers abstract-declaratoropt
abstract-declarator ::= pointer

[pointer] direct-abstract-declarator
direct-abstract-declarator ::= "(" abstract-declarator ")"

"[" direct-abstract-declarator "]" "[" [integer-constant] "]"
[direct-abstract-declarator] "[" "$" "]"
[direct-abstract-declarator] "(" [parameter-type-list] ")"

Constraints

In comparison with declaration that represents declarations of functions, variables, and types and that is defined in
6.7 of [ISO-9899-2011], AOC declaration have the following differences:

• It does not support init-declarator-list. Only declarator itself can be used instead.

• struct-or-union-specifier does not support specifying structure or union fields.

• enum-specifier does not support setting enumeration constants.

• The direct-declarator definition does not support:

– Various forms of array assignment.

– The outdated form of providing function parameters.

• parameter-type-list does not support "..." that designates a list of arbitrary function parameters of arbitrary
length (it is supported at the level of declaration-specifiers which is discussed below).

1.3. Aspect-Oriented C 21

CIF Documentation

• The direct-abstract-declarator definition does not support various forms of array assignment.

• declaration-specifiers additionally supports:

– Wildcard ".." capturing a list of arbitrary function parameters of arbitrary length.

– "..." that designates a list of arbitrary function parameters of arbitrary length. This works only for declara-
tions from parameter-list.

• The type-specifier definition supports universal type specifier "$" in addition. One declaration can contain
no more than one universal type specifier among all its specifiers. This restriction is important since exactly the
same wildcard can be used in place of a declaration name. For a structure, union, or enumeration declaration
a corresponding type specifier should be specified. This is necessary to distinguish declarations using two "$"
symbols that match variables or functions. For example, $ $ can correspond to variables such as int var1, static
long int var2 and char var3[10], but it does not match struct S, union U and enum E types. For the latter you
can use struct $, union $ and enum $ respectively.

• direct-declarator and direct-abstract-declarator supports universal array size "$".

Semantics

Declarations are distinguished in the following way. Absence of declarator in the declaration definition means
that this declaration is a composite type declaration. If declarator is present then the declaration is either a function
declaration (if there is parameter-type-list) or a variable.

Wildcard ".." in the definition of declaration-specifiers corresponds to a list of arbitrary function parameters of
arbitrary length at a joint point. Several consecutive, separated by commas ".." are treated as one "..".

As a matter of fact "..." in declaration-specifiers exactly coincides with the same terminal in
parameter-type-list (6.7.6 of [ISO-9899-2011]). The need to transfer it arose due to the ambiguity of the grammar
otherwise.

Basically the semantics of declaration corresponds to the semantics of declaration described in 6.7 of
[ISO-9899-2011].

Universal type specifier "$" in the definition of type-specifier means the following:

• If the universal type specifier is located before any other type specifier, then it denotes a list of arbitrary declaration
specifiers of arbitrary length (the "$" symbol does not match arbitrary typedef-name). For instance, $ matches
char, int, unsigned int, static inline int and so on.

• If the universal type specifier is the only type specifier among declaration specifiers (according to the restriction
specified earlier, it can be functions or variables only), then it denotes a type of variable or return value of a
function, which is arbitrary up to the specified declaration specifiers. For instance, $ int matches int, unsigned
int and static inline int, but it does not match, say, char.

Universal array size "$" in definitions of direct-declarator and direct-abstract-declarator corresponds to
an arbitrary array size at a joint point. For example, int array[$] will match both int array[3] and int array[5].

22 Chapter 1. Contents

CIF Documentation

1.3.15 Pointcuts

Syntax

named-pointcut ::= "pointcut" identifier ":" pointcut
pointcut ::= identifier

primitive-pointcut
composite-pointcut

composite-pointcut ::= "!" pointcut
pointcut1 "||" pointcut2
pointcut1 "&&" pointcut2
"(" pointcut ")"

primitive-pointcut ::= "define" "(" macro ")"
"expand" "(" macro ")"
"declare_func" "(" declaration ")"
"execution" "(" declaration ")"
"call" "(" declaration ")"
"get" "(" declaration ")"
"get_global" "(" declaration ")"
"get_local" "(" declaration ")"
"infunc" "(" declaration ")"
"introduce" "(" declaration ")"
"set" "(" declaration ")"
"set_global" "(" declaration ")"
"set_local" "(" declaration ")"
"file" "(" file-name ")"
"infile" "(" file-name ")"

Constraints

It is forbidden to use "$" wildcards in identifier in the definition of named-pointcut. Preprocessed aspect files
can not define several named pointcuts with the same identifier.

identifier can be only an identifier of a previously defined named pointcut in the definition of pointcut. It also
can not use "$" wildcards.

Strictly speaking pointcut1 and pointcut2 represent different pointcuts in the definition of composite-pointcut.

The definition of primitive-pointcut has following constraints (you can find extra details about declarations in
Declarations of functions, variables, and types):

• declaration for "declare_func", "execution" and "call" should be only a function declaration.

• declaration for "get", "get_global", "get_local", "set", "set_global" and "set_local" should be only a variable
declaration.

• declaration for "introduce" should be only a declaration of a composite type.

1.3. Aspect-Oriented C 23

CIF Documentation

Semantics

named-pointcut binds pointcut to identifier that one can use in other pointcuts to refer the given one.

composite-pointcut is a composition of pointcuts obtained using parentheses and operators "!", "&&" and "||". The
precedence of operators "!", "&&" and "||" decreases left to right.

primitive-pointcut describes the following sets of joint points:

• "define" and "expand" – respectively a definition or substitution of macro.

• "declare_func", "execution" and "call" – correspondingly a declaration, definition, or call of a function having
appropriate declaration.

• "get" and "set" – respectively a usage or assignment of a value to a variable with corresponding declaration.

• "get_global", "set_global", "get_local" and "set_local" – the same as the previous primitive pointcut, but global
and local (including function parameters) variables are distinguished.

• "infunc" – join points in a context of a function with specified declaration.

• "introduce" – a definition of a structure, union, or enumeration with specified declaration.

• "file" – a file with file-name.

• "infile" – join points in a context of a file with file-name.

1.3.16 Advices

Syntax

advice ::= advice-declaration advice-body
advice-declaration ::= "before" ":" pointcut

"around" ":" pointcut
"after" ":" pointcut
"info" ":" pointcut
"new" ":" pointcut
"query" ":" pointcut

Note: "info" is a deprecated alias for "query". You can use any of them, but "query" is more preferable.

Note: It is not recommended to use "new".

Constraints

Each advice should consist of advice-declaration and advice-body. Any pointcut is allowed for
advice-declaration with "before", "around", "after" and "query". Only primitive-pointcut corresponding
to file-name is allowed for "new" advice-declaration.

In advice-body of "before", "around", "after", "new" and "query" one can use special directives "$env", "$fprintf"
(if other special directives represent its parameters, then similar restrictions are imposed on them) and "$signature".
Besides, in advice-body of "before", "around", "after" and "query" it is possible to use the following special directives
when pointcut matches an appropriate joint point:

24 Chapter 1. Contents

CIF Documentation

• For macro definitions – "$arg", "$arg_numb", "$context_file", "$name" and "$proceed".

• For macro substitutions – "$arg", "$arg_numb", "$arg_val" (a value of an actual macro parameter as is), "$con-
text_file", "$name" and "$proceed".

• For function calls – "$arg", "$arg_numb", "$arg_sign", "$arg_size", "$arg_type", "$arg_val", "$context_file",
"$context_func_file", "$context_func_name", "$name", "$proceed", "$res" (only for "after"), "$ret_type" and
"$storage_class".

• For function declarations – "$arg_numb", "$arg_type", "$context_file", "$name", "$ret_type" and "$stor-
age_class".

• For function definitions – "$arg", "$arg_numb", "$arg_type", "$context_file", "$name", "$proceed", "$res" (only
for "after"), "$ret_type" and "$storage_class".

• For usages and assignments of values to local or global variables – "$context_file", "$context_func_file", "$con-
text_func_name", "$name", "$proceed", "$res" (only for "after"), "$ret_type" (a matched variable type) and
"$storage_class" (only for global variables).

• For declarations of composite types – "$context_file", "$name" and "$ret_type" (a matched composite type).

Semantics

pointcut included in advice-declaration determines a set of join points for which this advice should be applied,
that assumes either executing the code from advice-body or framing join points with it.

"before", "after" and "around" advices are applied before, after or instead matched join points respectively. "around"
advices can also wrap corresponding join points indicated by the "$proceed" special directive in advice-body.

"query" advices do not change the program code. These advices are used only for formatted output of information
about joint points to a file by means of special directives "$fprintf".

The "new" advice creates a file that is specified in "pointcut". This feature allows, for example, to declare common
variables and functions for several C source files.

In advice-body it is allowed to write arbitrary correct C code with GCC compiler extensions as well as a set of special
directives (Special directives). You can use only special directives "$fprintf" in bodies of "query" advices (parameters
of this special directive may be other valid special directives).

If parameter names are used in parameter-type-list, then you can use them to refer corresponding parameters in
advice-body.

If several advices match the same join point, then only the one that occurs earlier in the aspect file is applied. For more
complex cases, for example, when a program is woven in with several aspects at once, the behavior of the aspect weaver
is uncertain.

1.3.17 Aspects

Syntax

text ::= [advice-or-named-pointcut-list]
advice-or-named-pointcut-list ::= advice-or-named-pointcut-list advice

advice-or-named-pointcut-list named-pointcut

1.3. Aspect-Oriented C 25

https://gcc.gnu.org/

CIF Documentation

Constraints

Aspects should be placed in separate files. After performing aspect preprocessing (see Introduction for details), each
aspect can either be empty or consist of one or more advices and named pointcuts. In addition, line directives and
comments can be used.

Semantics

Aspects are additional modules that describe the cross-cutting concerns of programs.

1.4 Development

1.4.1 Building debug version of Aspectator

To build a debug version of Aspectator you can either run the following command:

$ make -j16 debug

or make the appropriate actions by hand. The first action is to create a separate directory for it, say:

$ mkdir build-debug
$ cd build-debug

Then you need to configure Aspectator:

$ MAKEINFO=missing ../aspectator/configure --enable-languages=c --disable-multilib --
→˓disable-nls --enable-checking=release

and make its debug version:

$ make STAGE1_CXXFLAGS="-g -O0" all-stage1

You can use option -jN for make to essentially speed up building, but it can cause failures (just invoke the command
several times to overcome this):

$ make -j16 STAGE1_CXXFLAGS="-g -O0" all-stage1

After making some changes to files starting with ldv- prefix it is strongly recommended to rebuild the debug version of
Aspectator with -Werror flag to treat all warnings as errors:

$ make STAGE1_CXXFLAGS="-g -O0 -Werror" all-stage1

To debug Aspectator you can use gdb or ddd:

$ ddd gcc/cc1 &

To debug instrumentation you need to set the following environment variables:

set env LDV_STAGE=3
set env LDV_ASPECT_FILE=$ABS_PATH_TO_ASPECT_FILE
set env LDV_OUT=out.c

To debug C back-end you need to set the following environment variables:

26 Chapter 1. Contents

CIF Documentation

set env LDV_STAGE=4
set env LDV_C_BACKEND_OUT=out.c

Note: These instructions were adapted from http://gcc.gnu.org/wiki/DebuggingGCC.

1.4.2 Profiling Aspectator

Sometimes developers need to track whether some memory issues (e.g. memory leaks, use after free, etc.) were
introduced and to measure algorithms complexity. First of all you need to build a debug version of Aspectator (Building
debug version of Aspectator) and install extra tools such as valgrind, valkyrie and kcachegrind.

Tracking memory issues of Aspectator

To track memory issues you need to run Aspectator under valgrind (do not specify –suppressions if you do not have
them):

LDV_ASPECT_FILE=$PATH_TO_ASPECT_FILE \
LDV_STAGE=$STAGE \
LDV_OUT=$PATH_TO_OUT \
valgrind \
--tool=memcheck \
--leak-check=yes \
--suppressions=gcc.supp \
--num-callers=500 \
--xml=yes \
--xml-file=output.xml \
$PATH_TO_ASPECTATOR_BUILD_DEBUG/gcc/cc1 \
$PATH_TO_INPUT_FILE

After that you can either inspect output.xml manually or use valkyrie:

$ valkyrie -l output.xml

Tracking CPU time issues of Aspectator

To measure CPU time consumption you need to run Aspectator under valgrind:

LDV_ASPECT_FILE=$PATH_TO_ASPECT_FILE \
LDV_STAGE=$STAGE \
LDV_OUT=$PATH_TO_OUT \
valgrind \
--tool=callgrind \
$PATH_TO_ASPECTATOR_PROFILED_DEBUG/gcc/cc1 \
$PATH_TO_INPUT_FILE

After that you can either inspect files callgrind.out.* manually or use some tool, e.g. kcachegrind:

$ kcachegrind -l callgrind.out.*

1.4. Development 27

http://gcc.gnu.org/wiki/DebuggingGCC

CIF Documentation

28 Chapter 1. Contents

BIBLIOGRAPHY

[ISO-9899-2011] ISO/IEC 9899:2011 Information technology – Programming languages – C

29

CIF Documentation

30 Bibliography

INDEX

E
environment variable

LDV_PRINT_SIGNATURE_OF_MATCHED_BY_NAME, 9

L
LDV_PRINT_SIGNATURE_OF_MATCHED_BY_NAME, 9

31

	Contents
	Deployment
	Build dependencies
	Build and install
	Automatic testing
	Uninstall
	Cleanup

	Tutorial
	Weaving function calls
	Weaving macros
	Weaving variables
	Weaving compound types
	Querying source code
	Invalid aspects
	Getting woven source files
	Further study
	Known issues

	Aspect-Oriented C
	Introduction
	Tokens
	Syntax
	Constraints

	Keywords
	Syntax
	Constraints
	Semantics

	Identifiers
	Syntax
	Constraints
	Semantics

	Integer constants
	Syntax
	Constraints
	Semantics

	String literals
	Syntax
	Constraints
	Semantics

	Punctuators
	Syntax
	Constraints
	Semantics

	File names
	Syntax
	Constraints
	Semantics

	Advice bodies
	Syntax
	Constraints
	Semantics

	Special directives
	Syntax
	Constraints
	Semantics

	Location control directives
	Syntax
	Constraints
	Semantics

	Comments
	Macros
	Syntax
	Constraints
	Semantics

	Declarations of functions, variables, and types
	Syntax
	Constraints
	Semantics

	Pointcuts
	Syntax
	Constraints
	Semantics

	Advices
	Syntax
	Constraints
	Semantics

	Aspects
	Syntax
	Constraints
	Semantics

	Development
	Building debug version of Aspectator
	Profiling Aspectator
	Tracking memory issues of Aspectator
	Tracking CPU time issues of Aspectator

	Bibliography
	Index

